Exam 2
 Sections 2.1-2.5 and 3.1-3.4

Name: \qquad

Do not write your name on any other page. Answer the following questions. Answers without proper evidence of knowledge will not be given credit. Make sure to make reasonable simplifications.

Show your work!

1. (10 points) Draw the phase diagram for the autonomous differential equation

$$
\frac{d x}{d t}=\left(x^{2}-5 x+4\right)\left(x^{2}-16\right)
$$

and determine which critical points are stable and unstable.
2. (10 points) Consider a rabbit population satisfying the logistic equation

$$
\frac{d P}{d t}=2 P-(0.005) P^{2}
$$

where t is measured in years. If the initial population is 700 rabbits, how many months does it take for $P(t)$ to reach 105% of its limiting population M ?
3. (3 points) Recall that an object's velocity (moving vertically) is given by

$$
\frac{d v}{d t}=-g-\rho v^{p}
$$

where g is the force of gravity, $\rho=\frac{k}{m}>0$, and $1 \leq p \leq 2$. Suppose a team of scientists are trying to determine a projectile's escape velocity from Earth's atmosphere. That team of scientists makes the assumption that $p=2$ and finds that the initial velocity required to escape Earth's atmosphere (without additional thrust) is given by

$$
v_{0}=\sqrt{\frac{2 G M}{R}}
$$

where M is the mass of the Earth and R is its equatorial radius. Give a sentence of justification as to why this initial velocity will be sufficient to escape Earth's atmosphere for all values of p.
4. (7 points) Consider a body that moves horizontally through a medium whose resistance is given by

$$
\frac{d v}{d t}=-2 v^{3 / 2}
$$

Assuming that $v(0)=1$ and $x(0)=1$, find the position $x(t)$ as a function of t.
5. (10 points) Find the general solution of the differential equation

$$
6 y^{(4)}+5 y^{(3)}+25 y^{\prime \prime}+20 y^{\prime}+4=0
$$

which has characteristic function

$$
\left(r^{2}+4\right)\left(6 r^{2}+5 r+1\right)=0
$$

6. (10 points) An 8 -lb weight (mass $m=0.25$ slugs) is attached both to a vertically suspended spring that it stretches 12 in . and to a dashpot that provides 2 lb of resistance for every foot per second of velocity.
(a) The weight is pushed up 6 in above its static equilibrium position and then released from rest at time $t=0$, find its position function $x(t)$.
(b) Determine if the motion is over-damped, critically damped or under-damped.

Hint: If you can not figure out the constants, make a guess and do the rest of the problem to demonstrate your ability to do other aspects of the problem for partial credit.

